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Coupling of Tachyons to Electromagnetism
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We consider a fourth-order equation implying a bradyonic and a tachyonic mode
of propagation for a scalar field. The electromagnetic field is introduced via the
gauge covariant derivative. We show that the interacting fourth-order equation
is equivalent to a second-order Klein±Gordon equation also minimally coupled,
with the tachyon living in closed loops connected only to photon lines. The
equivalence shows that the fourth-order theory is renormalizable and unitary.

1. INTRODUCTION

For a discussion on the possible existence of tachyons see Feinberg [1].

Clasically a superluminal charged particle will emit CÃerenkov radiation,

losing energy and momentum to the electromagnetic field [2]. Quantum

mechanically we should consider a field obeying a Klein±Gordon equation
with the wrong sign of the mass term [3, 4]. However, a close examination

of this equation [5, 6] leads to the conclusion that such a field can not exist

asymptotically as a free wave. Its propagation is not of the Feynman type,

but rather of the Wheeler type, i.e., half-advanced and half-retarded [7].

Consequently a tachyon cannot be observed as a free particle. For this reason

it seems that the question of the possible existence of an electrically charged
superluminal particle loses much of its meaning, as the very definition of

charge involves the scattering of a free particle by a potential.

Nevertheless, a tachyon field can exist, together with other fields, as a

carrier of interactions, or as a virtual particle between interaction vertices.

The tachyon may act as a companion field for normal particles.
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A simple example of the coexistence of bradyons and tachyons is pro-

vided by the equation [8]

(N2 2 m 4) w 5 (N 2 m 2)(N 1 m 2) w 5 0 (1)

The field w has two modes of propagation. One mode leads to normal

(bradyonic type) Klein±Gordon particles. The other leads to tachyons (wrong

sign of the mass term). The equivalence of a higher order equation to a set

of different excitations was studied in ref. 9.

The Green function of eq. (1) can be defined by the Fourier transform
of (see also ref. 8)

(N2 2 m 4)GÄ 5 i d (2)

i.e.,

G 5
i

p 4 2 m 4 (3)

while for a normal Klein±Gordon field we have

(N 2 m 2)KÄ 5 i d (4)

K 5
2 i

p 2 1 m 2 (5)

Note that

i

p 4 2 m 4 5
1

2m 2 1 2 i

p 2 1 m 2 1
i

p 2 2 m 2 2 (6)

where the bradyon and tachyon modes can explicitly be seen. Note the relative

normalization factor (2m 2) 2 1.

We can tackle our main problem by considering the coupling of w
[obeying Eq. (1)] with the electromagnetic field. In this way we expect to

see the mutual influence of electromagnetism and the field w , in its two
modes of propagation, thus indirectly answering the question of the possible

existence of a charged tachyon.

The interaction will be introduced via the gauge-invariant ª minimal

couplingº procedure. We replace each derivative in Eq. (1) by

- m ® - m 2 ieA m (7)

For the D’ Alembertian, this well-known procedure gives

N ® N8 [ ( - m 2 ieA m )( - m 2 ieA m )

5 N 2 2ieA ? - 2 e 2A 2 (8)

where we have chosen the Lorentz gauge - m A m 5 0.



Coupling of Tachyons to Electromagnetism 779

The right-hand side of (8) implies that for a normal scalar particle we

have a first order interaction:

I1 5 2e e ? p (9)

where e m is the polarization vector of the photon and p m is the four-momentum

of the particle.

The second-order term is

I2 5 2 2e 2 e 1 ? e 2 (10)

2. INTERACTION VERTICES

It is easy to deduce the result of the minimal coupling replacement [Eqs.

(7) and (8)] for the iterated D’ Alembertian:

N2 Þ N82 5 (N 2 2ieA ? - 2 e 2A 2)

? (N 2 2ieA ? - 2 e 2A 2)

N82 5 N2 2 2ie(NA ? - 1 A ? - N)

2 e 2 (NA 2 1 A 2N) 2 4e 2A ? - A ? -

1 2ie3(A ? - A 2 1 A 2A ? - ) 1 e 4A 4 (11)

This procedure gives rise to four interaction terms:

First order:

J1 5 2 2e e ? p1( p2
1 1 p 2

2), p2 5 p1 1 k (12)

Second order:

J2 5 2e 2 e 1 ? e 2( p2
1 1 p 2

2) 1 4e 2 ( e 1 ? p1 e 2 ? p2 1 e 1 ? p2 e 2 ? p1) (13)

Third order:

J3 5 2 4e 3( p1 1 p2) ? ( e 1 e 2 ? e 3 1 e 2 e 1 ? e 3 1 e 3 e 1 ? e 2) (14)

Fourth order:

J4 5 8e 4( e 1 ? e 2 e 3 ? e 4 1 e 1 ? e 3 e 2 ? e 4 1 e 1 ? e 4 e 2 ? e 3) (15)

Note that the interaction seems to be of the nonrenormalizable type.

Compare, for example, J1 [Eq. (12)] with I1 [Eq. (9)]. However, the propagator
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(3) has an extra power of two in the denominator, so that by power counting,

the theory turns out to be renormalizable. Furthermore, we are going to show

that it is equivalent to the second order theory for a charged scalar particle
determined by Eqs. (5) and (8)±(10).

To see the equivalence in a clear way, we are going to examine a couple

of examples. It will be evident that the theory given by the fourth-order

equation (1) with the gauge invariant electromagnetic coupling [Eq. (11)]

shares the same properties with the above-mentioned second-order theory.

For the construction of the matrix elements we must remember that any
vertex needs an i from the perturbative expansion, besides the factor I [Eqs.

(9) and (10)] or J [Eqs. (12)±(15)]. Also an external scalar line implies a

propagator, either K [Eq. (5)] or G [Eq. (3)].

3. COMPTON EFFECT

The lowest order Feynman diagrams are shown in Fig. 1.

For the second-order Klein±Gordon theory we use the propagator K
[Eq. (5)] and I1, I2 [Eqs. (9) and (10)]. We obtain

M (2) 5 (i2e e 1 ? p1)
2 i

p 2 1 m 2 (i2e e 2 ? p2)

? (i2e e 2 ? p1)
2 i

q 2 1 m 2 (i2e e 1 ? p2) 2 i2e 2 e 1 ? e 2 (16)

For the fourth-order theory, the propagator is G [Eq. (3)] and the vertex

factors are J1 [Eq. (12)] and J2 [Eq. (13)]:

M (4) 5 [ 2 i2e e 1 ? p1 ( p2
1 1 p 2)]

i

p 1 2 m 4 [ 2 i2e e 2 ? p2( p2 1 p 2
2)]

1 [ 2 i2e e 2 ? p1 ( p2
1 1 q 2)]

i

q 4 2 m 4 [ 2 i2e e 1 ? p2(q
2 1 m 2)]

1 i2e 2 e 1 ? e 2 ( p2
1 1 p 2

2) 1 4ie2 e 1 ? p1 e 2 ? p2

1 4ie2 e 2 ? p1 e 1 ? p2 (17)

Fig. 1. Compton scattering.



Coupling of Tachyons to Electromagnetism 781

In Eq. (17)) we use the fact that the initial and final states (of w )

correspond to a bradyon, i.e., p 2
1 5 p 2

2 5 2 m 2:

M (4) 5 2 i4e 2 e 1 ? p1 e 2 ? p2
p 2 2 m 2

p 2 1 m 2

2 i4e 2 e 2 ? p1 e 1 ? p2
q 2 2 m 2

q 2 1 m 2 1 4ie2 e 1 ? p1 e 2 ? p2

1 4ie2 e 2 ? p1 e 1 ? p2 2 4m 2ie2 e 1 ? e 2 (18)

A comparison of Eqs. (16)) and (18) shows that

M (4) 5 2m 2M (2) (19)

This equality means that for the lowest order Compton effect of the

field w (M(4)) we can ignore the tachyon mode of propagation and proceed

as if only the bradyon mode were excited (M(2)).
It is easy to see that virtual photons do not spoil the equivalence we

have found. Take, for example, the production of a photon in the scattering

of two charged particles (see Fig. 2). For the vertices corresponding to the

virtual photon we should take

I 81 5 2ep m , I 82 5 2 2e 2 e m

J 81 5 2 2ep1
m ( p2

1 1 p 2
2)

J 82 5 2e 2 e m ( p2
1 1 p 2

2) 1 4e 2p1 m e ? p2 1 4e 2 p2 m e ? p1 (20)

With (20) and following the steps of the evaluation of (16) and (17),

we will be able to prove that M 8(4) 5 2m 2M 8(2).

In the introduction we said that the tachyon cannot propagate asymptoti-

cally as a free wave. Its propagator is equivalent, on the real axis, to Cauchy’ s
principal value Green function, so that its value on the free particle pole is

exactly zero. We are now going to prove not only that the tachyon mode

Fig. 2. Virtual photons.
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cannot propagate freely, but also that it cannot be produced by the Compton

effect on the bradyon mode of w .

For the proof we take again the amplitude M (4) [Eq. (17)] and put now
p 2

1 5 2 m 2 (a bradyon) and p 2
2 5 1 m 2 (a tachyon). The matrix element for

this tachyon production is then [cf. Eq. (17)]

M 5 [ 2 i2e e 1 ? p1( p2 2 m 2)]
i

p 4 2 m 4 [ 2 i2e e 2 ? p2 ( p2 1 m 2)]

1 [ 2 i2e e 2 ? p1 (q 2 2 m 2)]
i

q 4 2 m 4 [ 2 i2e e 1 ? p2(q2 1 m 2)]

1 i2e 2 e 1 ? e 2( 2 m 2 1 m 2) 1 4ie2( e 1 ? p1 e 2 ? p2 1 e 2 ? p1 e 1 ? p2) [ 0

(21)

and the probability amplitude for the production of a tachyon mode by the
Compton effect, turns out to be zero.

4. DOUBLE PHOTON SCATTERING

To see clearly the mechanism for the proof of the equivalence [Eq. (19)],

we will consider now a third-order process. The relevant Feynman diagrams

are shown in Fig. 3. The C diagram is only valid for the fourth-order theory.

For the first diagram we use G [Eq. (3)] and J1 [Eq. (12)]. We have

A1 5 [ 2 2ie e 1 ? p1( p2
1 1 p 2)]

i

p 4 2 m 4 [ 2 2ie e 2 ? p (p 2 1 r 82)]

?
i

r 84 2 m 4
[ 2 2ie e 3 ? p2(r

82 1 p 2
2)] (22)

With p 2
1 5 p 2

2 5 2 m 2, we get

A1 5 2 8ie3 e 1 ? p1 e 2 ? p2 e 3 ? p2
( p2 1 r 82)

( p2 1 m 2)(r 82 1 m 2)

All A diagrams can be obtained mutatis mutandis from A1:

A2 5 2 8ie3 e 1 ? p1 e 3 ? p e 2 ? p2
( p2 1 q 82)

( p2 1 m 2)(q 82 1 m 2)

A3 5 2 8ie3 e 2 ? p1 e 1 ? q e 3 ? p2
(q 2 1 r 82)

(q 2 1 m 2)(r 82 1 m 2)

A4 5 2 8ie3 e 2 ? p1 e 3 ? q e 1 ? p2
(q 2 1 p 82)

(q 2 1 m 2)( p82 1 m 2)
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Fig. 3. Double photon scattering.

A5 5 2 8ie3 e 3 ? p1 e 1 ? r e 2 ? p2
(r 2 1 q 82)

(r 2 1 m 2)(q 82 1 m 2)

A6 5 2 8ie3 e 3 ? p1 e 2 ? r e 1 ? p2
(r 2 1 p 82)

(r 2 1 m 2)( p82 1 m 2)
(23)

For the B diagrams we need also J2 [Eq. (13)]:

B1 5 [ 2 2ie e 1 ? p1 ( p2
1 1 p 2)]

i

p 4 2 m 4 [2ie2 e 2 ? e 3( p2
1 1 p 2)

1 4ie2( e 2 ? p e 3 ? p2 1 e 3 ? p e 2 ? p2)]
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B1 5 4ie3 e 1 ? p1 e 2 ? e 3
p 2 2 m 2

p 2 1 m 2 1 8ie3 e 1 ? p1 (24)

? ( e 2 ? p e 3 ? p2 1 e 3 ? p e 2 ? p2)
1

p 2 1 m 2

With appropiate changes we have

B2 5 4ie3 e 2 ? p1 e 1 ? e 3
q 2 2 m 2

q 2 1 m 2 1 8ie3 e 2 ? p1

? ( e 1 ? q e 3 ? p2 1 e 3 ? q e 1 ? p2)
1

q 2 1 m 2

B3 5 4ie3 e 3 ? p1 e 1 ? e 2
r 2 2 m 2

r 2 1 m 2 1 8ie3 e 3 ? p1

? ( e 1 ? r e 2 ? p2 1 e 2 ? r e 1 ? p2)
1

r 2 1 m 2

B4 5 4ie3 e 3 ? p2 e 1 ? e 2
r 82 2 m 2

r 82 1 m 2 1 8ie3 e 3 ? p2

? ( e 1 ? p1 e 2 ? r8 1 e 2 ? p1 e 1 ? r8)
1

r 82 1 m 2

B5 5 4ie3 e 2 ? p2 e 1 ? e 3
q 82 2 m 2

q 82 1 m 2 1 8ie3 e 2 ? p2

? ( e 1 ? p1 e 3 ? q8 1 e 3 ? p1 e 1 ? q8)
1

q 82 1 m 2

B6 5 4ie3 e 1 ? p2 e 2 ? e 3
p 82 2 m 2

p 82 1 m 2 1 8ie3 e 1 ? p2

? ( e 2 ? p1 e 3 ? p8 1 e 3 ? p1 e 2 ? p8)
1

p 82 1 m 2 (25)

For diagram C we use Eq. (14):

C 5 2 4ie3 ( p1 1 p2) ? ( e 1 e 2 ? e 3 1 e 2 e 1 ? e 3 1 e 3 e 1 ? e 2) (26)

We first group together all terms in which each polarization vector e is

contracted with some four-momentum vector. We take A1 plus parts of B1

and B4 (with similar e ? p dependence).
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A 81 5 2 8ie3 e 1 ? p1 e 2 ? p e 3 ? p2 F p 2 1 r 82

( p2 1 m 2)(r 82 1 m 2)

2
1

p 2 1 m 2 2
1

r 82 1 m 2 G
A 81 5 2m 28ie3 e 1 ? p1 e 2 ? p e 3 ? p2

1

( p2 1 m 2)(r 82 1 m 2)

Analogously,

A 82 5 2m 28ie3 e 1 ? p1 e 3 ? p e 2 ? p2
1

( p2 1 m 2)(q 82 1 m 2)

A 83 5 2m 28ie3 e 2 ? p1 e 1 ? q e 3 ? p2
1

(q 2 1 m 2)(r 82 1 m 2)

A 84 5 2m 28ie3 e 2 ? p1 e 3 ? q e 1 ? p2
1

(q 2 1 m 2)( p82 1 m 2)

A 85 5 2m 28ie3 e 3 ? p1 e 1 ? r e 2 ? p2
1

(r 2 1 m 2)(q 82 1 m 2)

A 86 5 2m 28ie3 e 3 ? p1 e 2 ? r e 1 ? p2
1

(r 2 1 m 2)( p82 1 m 2)
(27)

Finally, let us take the first term from the B-matrix elements, Eqs. (25),

together with similar terms from C [Eq. (26)]:

B 81 5 4ie3 e 1 ? p1 e 2 ? e 3 1 p
2 2 m 2

p 2 1 m 2 2 1 2
B 81 5 2 2m 24ie3 e 1 ? p1 e 2 ? e 3

1

p 2 1 m 2

B 82 5 2 2m 24ie3 e 2 ? p1 e 1 ? e 3
1

q 2 1 m 2

B 83 5 2 2m 24ie3 e 3 ? p1 e 1 ? e 2
1

r 2 1 m 2

B 84 5 2 2m 24ie3 e 3 ? p2 e 1 ? e 2
1

r 82 1 m 2

B 85 5 2 2m 24ie3 e 2 ? p2 e 1 ? e 3
1

q 82 1 m 2
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B 86 5 2 2m 24ie3 e 1 ? p2 e 2 ? e 3
1

p 82 1 m 2 (28)

We have proved that

o
6

i 5 1

Ai 1 o
6

i 5 1

Bi 1 C 5 o
6

i 5 1

A 8i 1 o
6

i 5 1

B 8i (29)

It is easy to check that A 8i and B 8i are (2m 2 times) the matrix elements

corresponding to diagrams A and B for the Klein±Gordon case, i.e., with the

propagator K and the interaction terms I1 and I2. So, the equivalence holds
also in third order.

Likewise, we can prove that the probability amplitude for the production

of a tachyon mode is identically zero in third order of the perturbation

expansion.

5. GENERAL PROOF

It is possible to show, order by order, that the equality M(4) 5 2m 2 M (2)

always holds. However, it is preferable to have a general proof. To that aim

we will use functional methods.
The Lagrangian corresponding to the fields w and A m interacting in a

gauge-invariant way is

+ 5 2 1±4 F m n F m n 1 w Å (N82 2 m 4) w (30)

where N8 is defined by Eq. (8). Our generating functional is

](7, 7Å , _) 5 # [$ w ][$ w Å ] [$A] exp i # dx(+ 1 z ( - ? A )2

1 7 w 1 7Å w Å 1 _ ? A ) (31)

The term in z assures the Lorentz gauge for the electromagnetic field.

The exponential in (31) depends quadratically on the scalar field. We

can then use the general Gaussian formula [10]

# [$ w ][$ w Å ] exp i # dx( w Å 2 w 1 7 w 1 7Å w Å )

5 18(Det 2) 2 2 exp 2 i # dx72 2 17Å (32)
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For our case we take

2 5 N82 2 m 4 (33)

Introducing the definitions

3 5 N8 2 m 2, 4 5 N8 1 m 2 (34)

we have

2 5 34, Det 2 5 Det 3 Det 4 (35)

and

2 2 1 5 3 2 1 42 1 5
1

N8 2 m 2

1

N8 1 m 2

5
1

2m 2 1 1

N8 2 m 2 2
1

N8 1 m 2 2
2 2 1 5

1

2m 2 3 2 1 2
1

2m 24
2 1 (36)

So that

(32) 5 18(Det 3) 2 2(Det 4) 2 2

? exp 2 i # dx

2m 2 7 3 2 17Å exp i # dx

2m 2 74 2 17Å (37)

We can use again the gaussian formula (32) for the operators 3 and 4
and two independent scalar fields w 1 and w 2:

# [$ w 1][$ w Å 1] exp i # dx 1 w Å 13 w 1 1
1

! 2m
7 w 1 1

1

! 2m
7Å w Å 1 2

5 11(Det 3) 2 2 exp 2 i # dx

2m 2 73 2 17Å (38)

# [$ w 2][$ w Å 2] exp i # dx 1 2 w Å 24w 2 1
1

! 2m
7 w 2 1

1

! 2m
7Å w Å 2 2

5 12(Det 4) 2 2 exp i # dx

2m 2 74 2 17Å (39)
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In (38) and (39) we renormalize the scalar fields:

w j ® ! 2m w j ( j 5 1,2) (40)

The equalities (32), (36), (38), and (39) with (33)±(36) and (40) imply

that we have established the relation

# [$ w ][$ w Å ] exp i # dx( w Å 34 w 1 7 w 1 7Å w Å )

5 1 # [$ w 1][$ w Å 1][$ w 2][$ w Å 2]

? exp i # dx (2m 2 w Å 13 w 1 2 2m 2 w Å 24 w 2 1 7( w 1 1 w 2) 1 7Å ( w Å 1 1 w Å 2))

(41)

If we multiply both members of (41) with

exp i # dx 1 2 1

4
F m n F

m n 1 z ( - ? A )2 1 _ ? A 2 (42)

we can deduce, after functional integration over A, that

# [$ w ][$ w Å ][$A] exp i # dx (+ 1 z ( - ? A )2 1 7 w 1 7Å w Å 1 _ ? A )

5 1 # [$ w 1][$ w Å 1][$ w 2][$ w Å 2][$A]

? exp i # dx(+Ä 1 z ( - ? A )2 1 7( w 1 1 w 2) 1 7Å ( w Å 1 1 w Å 2) 1 _ ? A )

5 ]Ä (7, 7Å , _) (43)

where

+Ä 5 2 1±4 F m n F m n 1 2m 2 w Å 13 w 1 2 2m 2 w Å 24w 2 (44)

The equivalence of the generating functionals ](7, 7Å , _) and ]Ä (7, 7Å ,
_) expressed by Eq. (43) implies the equivalence of the lagrangians (30)

and (44).

The Lagrangian (30) describes the gauge-invariant interaction of the

electromagnetic field with a scalar field that obeys a fourth-order equation

of motion

(N82 2 m 4) w 5 0 (45)

where N82 is given by (11).
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On the other hand, the lagrangian (44) describes the interaction of the

electromagnetic field with two independent scalar fields obeying second-

order equations:

(N8 2 m 2) w 1 5 0 (46)

(N8 1 m 2) w 2 5 0 (47)

with N8 given by (8).

Equation (46) describes a normal Klein±Gordon particle interacting with

the electromagnetic field. Equation (47) describes a tachyonic field interacting
with the electromagnetic field. There is not direct interaction between w 1 and

w 2. The only mutual action is produced via interchange of photons.

The tachyonic mode cannot exist as a free wave. It can only be found

virtually, in closed loops, joined to the rest of the diagram by photon lines.

The question of a possible acausal behavior due to its propagator (half-

advanced and half-retarded) is answered in ref. 11, and its relation to unitarity
is taken up in ref. 12. See also refs. 6 and 13.

6. DISCUSSION

According to previous results [5, 6], tachyons propagate by means of a

half-advanced and half-retarded Green-function. This propagator lacks the on-

shell d -function which is present in Feynman’ s causal function. Consequently,

tachyons cannot be found as free particles. Thus, the question of the existence

of a possible electric charge for the tachyon seems to be devoid of physical
sense. However, a tachyon field can act as an internal carrier of interactions

between normal particles. Such is the case, for example, for the higher order

equations found in ref. 14.

A field w obeying

(Nn 2 m 2n) w 5 0

has n modes of propagation [15]. One of them corresponds to a normal

particle of mass m. For n even, there is also a tachyonic mode.
The simplest higher order equation of that family is obtained by taking

n 5 2. It has a bradyon and an associated tachyon mode.

It is natural to introduce the interaction with the electromagnetic field,

by using the gauge-covariant derivative. The resulting equation has up to a

fourth-order interaction term [Eq. (11)]. The construction of the amplitudes

for any electromagnetic process is determined by means of the Feynman
diagram technique and the use of vertices (12)±(15) with the propagator (3).

The electromagnetic behavior of a normal Klein±Gordon particle is well

known. It corresponds to the use of vertices I1 Eq. (9), and I2 Eq. (10), with

the propagator K, Eq. (5).
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We compare the amplitudes for a given physical process evaluated by

means of the second-order theory and those evaluated with the fourth-order

theory. Except for a constant factor (2m 2) due to normalization [cf. Eq. (6)],
the theories give identically equal matrix elements. By algebraic manipulation

it is possible to pass from one set of matrix elements to the other. The theories

turn out to be completely equivalent in general, as shown in Section 5.

The proof developed in Section 5 sheds light upon the relation between

the theories. We have established the equivalence of the Lagrangians + [Eq.

(30)] and +Ä [Eq. (44)]. The latter Lagrangian corresponds to the theory of
two independent second-order equations (46) and (47), while in (45) both

modes of excitations live together in the field w .

We have two equivalent points of view. For the fourth-order Lagrangian

(30) photons interact with w with intensity given by the vertex factors J [Eqs.

(12)±(15)]. This interaction excites the propagation of both modes (bradyon

and tachyon) according to the Green function G [Eq. (3)]. The construction
of the matrix element M (4) is followed by the evaluation of the scattering

amplitude and the corresponding cross section.

For the second-order Lagrangian (44) each photon interacts with w 1 or

w 2 independently, with intensity given by the factors I [Eqs. (9) and (10)].

The excitations produced on w 1 propagate according to the Green function
K. In this way we can construct the matrix element M(2) corresponding to

any electromagnetic process. The field w 2 appears in closed loops which

only interact with photons. They influence the polarization tensors of the

electromagnetic field (as any charged particle does).

The cross sections are equal to those found with the fourth-order theory.

It has been proved in ref. 9 that unitarity holds for tachyon loops, provided
that the half-advanced and half-retarded propagator is used. In this reference

it is also shown that the propagation associated with a Wheeler Green function

takes place inside the light cone of the coordinates. It is never superluminal

(not even for tachyons).

Summarizing: The electromagnetic behavior of a charged Klein±Gordon

particle and that of the bradyon component of a field w obeying the fourth-
order equation (45) are equal. The tachyon component only acts in internal

loops coupled to photon lines.
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